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Numerical Simulation of a Turbulent Flow

Through a Shock Wave

INTRODUCTION

Renewed interest in designing a hypersonic aircraft makes essential a

reappraisal of the various fluid mechanics phenomena typical of such high speed

flow. At hypersonic speeds there are flow phenomena that do not occur at

subsonic speeds, such as real gas, chemical and thermal effects and, in particular,

the effect on the flow of strong shock waves. Because of the extremely harsh

environment in which these phenomena occur, it is difficult to investigate them

experimentally and, consequently, a much greater reliance must be placed on

numerical simulations than is the case in lower speed regimes.

This report describes the results of research conducted over a two-year period

to provide a foundation for an extended research effort into the interaction between

shock waves and turbulent flows at hypersonic speeds using numerical simulations.

The work described herein was conducted at transonic speeds in order to make

maximum use of existing knowledge and computational methods for developing

insight to the shock/turbulence interaction and to aid in identifying problems in the

overall approach.

One of the basic problems in high speed flow with shock waves is the

shock/boundary layer interaction, particularly the interaction of the very large

pressure gradient with the turbulence. The lack of detailed knowledge of this

interaction is a probable cause of the frequent disagreement between numerical

predictions of a shock/boundary layer interaction and experimental data from such

interactions. Even if the shock/turbulence interaction itself were not the cause of

inaccurate predictions, the uncertainty of the nature of the interaction precludes an

accurate identification of the real cause. Consequently, it is essential to understand

the nature of the shock/turbulence interaction.
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It is expected that shock/turbulence interactions will be most important at

hypersonic speeds where the shock is strongest. However, even a weak shock wave,

typical of those at transonic speeds, should have a significant effect on the

turbulence because of the very large pressure gradient across the shock. The first

step in this investigation was, therefore, to study the interaction at these lower

speeds, where the problem is more tractable, prior to attempting to study a

hypersonic shock/turbulence interaction.

The primary objectives of the effort described herein were to choose a

numerical scheme which would provide calculations of sufficient accuracy to give

insight into shock/turbulence interactions, to allow extension of the work to higher

Mach numbers and more complex flow configurations, and to define a flow

configuration which could be used to study the interaction between turbulence and

shock waves. The configuration needed to be physically realistic, but also simple

enough to allow the identification of different aspects of the interaction. The

numerical method chosen was an explicit, second order accurate, MacCormack

scheme. The configuration chosen was a normal shock in a flow which was uniform

except within a narrow region in the center of the computational domain.

Calculations were performed in a supersonic flow with an upstream Mach number of

1.15. Turbulence was simulated in a finite portion of the entrance boundary using

pseudo-random distributions of velocities, density, and pressure produced by a

standard random number generator function. The shock wave was constrained to

be held at a fixed position in the flow field by conditions imposed at the lateral

boundaries. Calculations were performed for the turbulent flow with and without

the shock. A statistical analysis was also performed by calculating samples of

various statistical quantities as the calculations proceeded.

The remainder of this report will describe the selection of the numerical

methods used, including tests of various computational grid configurations and the

definition of the flow configuration. The particular grid and computer codes used

will be described, along with the numerical methods of calculating statistical data

from calculated turbulence. Results will be presented for a sample shock/turbulence

interaction and for a separate analysis of a perturbed shock wave based on

transonic indicial theory. The comparison of the two theories will be shown to

-
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indicate that the motion of the shock wave due to turbulent fluctuations must be

accounted for in order to accurately model the passage of turbulence through a

shock.

NUMERICAL METHOD

The choice of a method of obtaining numerical solutions to the governing flow

equations was made through considerations of the nature and complexity of the flow

field to be calculated. Of primary concern was that the numerical method be easily

applied to the problem of interest, and be easily modified and capable of extension

to calculate fully three-dimensional flows. Of equal importance was the need for

accuracy, both in time and space in order to be able to resolve rapid small scale

fluctuations.

Since the calculations to be made were intended to provide information about

the fundamental nature of the flow, the need for accuracy and ease of use of the

method were also accompanied by the need for minimal artificial factors attributable

to the numerical method itself. Examples of such artificial factors are artificial

dissipation, shock smearing, that is, spreading of the shock over several

computational points, and numerical oscillations. Also, the method must be able to

calculate the correct shock speed and be well suited to a time accurate calculation.

Finally, the computational method should be efficient, allowing many calculations to

be made at minimum cost.

Three types of numerical methods were examined: artificial dissipation methods,

linear hybridization methods, and Godunov methods. Artificial dissipation methods,

such as generalized Lax-Wendrof methods, including MacCormack schemes, were

found to be desirable because of simplicity of application. Such methods are

especially successful when the artificial viscous effects can be mostly confined to a

well-defined finite region, such as the high gradient region associated with a shock
w ave.

Lincar hybridization methods, such as flux corrected transport or total

variational diminishing (TVD) methods have the advantage of improved resolution of

flow discontinuities when a uniform grid is used. However, the methods require
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double the work of artificial dissipation methods and are clearly limited by the

resolving power of the low order fluxes. Also, there is difficulty in devising

appropriate weight factors for the low order and high order fluxes.

Godunov's approach avoids artificial dissipation and is highly accurate when a

higher order difference scheme involving explicit nonlinearity is used. However, the

use of a Riemann solver introduces a great deal of complexity into a difference

scheme. Use of such a method for the problem of interest herein would involve a

major code development, a formidable research program in itself. Such an approach

was clearly unsuitable for the present study.

The computational method chosen for the present study was the explicit

MacCormack scheme. The choice was based on three favorable characteristics of

the method: (1) Simplicity; a two-dimensional scheme could be developed for

preliminary work and could then be easily extended to three dimensions; (2)

Relatively good resolution of unsteady shocks; (3) An estimate of implicit artificial

dissipation is available, allowing an evaluation of the quality of the numerical

results.

A two-dimensional Navier-Stokes solver was developed using the standard

MacCormack scheme algorithm in a clustered cartesian coordinate system. An H-

grid was chosen to avoid coordinate transformations for comparison of Reynolds

stresses before and after shocks. The shock capturing performance of the code was

tested by application to a flow field with an oblique shock. The results were

compared to results obtained from a similar code developed by J. Shang (Ref. 1).

Examples of the comparison of the two codes are shown in Figure 1. In Figure la

and b plots of constant density contours for an oblique shock at freestream Mach

number of 2.0 are shown. The code of Reference 1 is designated Code 1 in the

figure, and the code developed in the present work is Code 2. Both codes produce

s:ailar solutions from the perspective given by the density contours. In Figure 1c

and d, the density along a line through the shock wave is shown for the two codes.

Clearly, both codes suffer somewhat from the coarseness of the grid and numerical

dispersion effects. However, the new code produces a solution with reduced

oscillations. The effects on the code's shock capturing performance of grid

refinement, kinematic viscosity and second and fourth order artificial dissipation were

tested, and results will be presented subsequently.

-4-
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FLOW CONFIGURATION

In choosing a configuration for calculations of shock wave turbulence

interactions, it was decided initially that a flow field was required that would allow

observation of the direct effect of the shock wave on the turbulence and, conversely,

of the turbulence on the shock. The flow field should be clearly defined and allow

the researcher as much control as possible over the essential elements of the flow

through manipulation of the inflow, outflow, and boundary conditions. Thus, it was

considered important to avoid such things as: curved geometry, which would

require a curvilinear coordinate system; oblique shocks, which would possibly

undergo bifurcation, thus obscuring the effects of interest; shock reflections from

boundaries, which would create a complex flow field, thus making more difficult the

interpretation of shock-turbulence interaction effects; and no-slip boundary conditions

which would create a shear flow and lead to development of a more complex field

of turbulence.

The first configuration chosen for examination was a flow in a duct with a

bump on one wall. The incoming flow was subsonic, and a transpiration condition

was to be applied to the lower wall to generate a normal shock, with a symmetry

condition at the upper boundary. The exit flow would also be subsonic.

Unfortunately, such a configuration violates several of the criteria mentioned

previously as to be avoided. For example, the boundary condition on the

streamwise velocity component on the lower boundary is a no-slip condition. In
addition to the creation of shear, such a condition leads to slow numerical

convergence because of the grid refinement required for proper resolution of the

near-wall flow. The no-slip condition was necessary because the equations being

solved were the full Navier-Stokes equations. If the equations could have been

reduced to the Euler equations by neglecting the viscous terms, the no-slip condition

would not have been necessary. However, it was considered important to include

the viscous terms since the flow was expected to be subject to viscous dissipation.

Another fault of the duct flow configuration was that the shock wave location was

not precisely controllable, nor was the shock perfectly normal, even without

turbulence. Finally, the shock/turbulence interaction region was not clearly defined.

All these considerations led to rejecting the duct-with-a-bump as the configuration of
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choice, at least for the preliminary study. In retrospect, some of the objectionable

conditions were found to exist to some degree in the configuration that was actually

used, so that the duct-with-a-bump, or flow over an airfoil, remains a possibility for

further study.

The c,,nfiguration which was used was a simpler one in which the walls of the

duct were removed, and a normal shock wave was created in a uniform flow field

which contained turbulence in a central region. The incoming flow was slightly

supersonic (M = 1.15). Inviscid boundary conditions were used at the top and

bottom boundaries. The initial flow field was specified as a uniform flow with a

normal shock, thus modeling a flow in a shock tube in which the observer is

moving with the shock. The location of the shock was fixed in space by keeping

the solution at the top and bottom boundaries constant and specifying the pressure

at the downstream boundary to be the theoretical pressure for a normal shock from

one-dimensional Rankine-Hugoniot theory. Some refinement of the solution was

achieved by running a steady flow solution in which the incoming flow was

constant, and the top and bottom boundary conditions were periodically revised by

setting the flow variables equal to their values at the centerline. In this way, after

several adjustments, a steady flow field was achieved which was the same

everywhere, including the boundaries, with a shock jump which spread over several

grid poin.s in the streamwise direction, the number of grid points depending upon

the magnitude of the real and artificial viscosities.

The generation of turbulence in the flow field will be discussed in a

subsequent section. It is noted that the turbulence was specified in a central

section of the inflow boundary. Disturbances from the turbulent flow field

propagated along Mach lines toward the top and bottom boundaries of the

configuration. The width of the computational space was such that these

disturbances intersected the shock wave before they intersected the boundaries.

Thus, the boundary conditions should represent realistically the steady propagation

of a shock wave in a uniform flow field encountering a finite region of turbulence

with the observer moving along with the undisturbed shock wave.

The development of the flow field in the steady case can be seen in Figures 2

and 3. In Figure 2, the convergence history of the maximum change in the

numerical solution is shown. When the boundary conditions change, every 200 time
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steps, there is a jump in the residual, which then proceeds to approach an

asymptote. The asymptotic level is reduced each time the boundary conditions arc

refined. After four such refinements, as shown in the figure, the residual remained

constant. It is noted that the particular numerical scheme being used in these

calculations was an explicit MacCormack scheme, for which the asymptotic value of

the residual is a function of the time step. Use of an implicit formulation would

eliminate this effect. In Figure 3, the profile of the Mach number variation

through the shock wave is shown. The effects of second and fourth order artificial

dissipation and of Reynolds number are indicated. The first case is a Reynolds

number of 10,000 and no artificial dissipation. The results shown in Figure 3a

indicate that the shock is spread over about 6 grid points, and the numerical

scheme produces some oscillations both upstream and downstream of the shock

jump. In Figure 3b some second order dissipation has been added, producing no

discernible change in the solution. Adding some fourth order dissipation alone, on

the other hand, reduces substantially the oscillations downstream of the shock while

leaving unaffected, or possibly slightly increasing, the upstream oscillations (Fig. 3c).

Including both second and fourth order dissipation apparently is no better than the

second order alone, as indicated in Figure 3d. Reynolds number effects are quite

large as shown in Figure 3e and f, where the Reynolds number varies by an order

of magnitude above and below that of Figure 3d. The higher Reynolds number

(lower viscosity) clearly reduces the spreading of the shock over the grid, but

increases the amplitude of the oscillations. The lower Reynolds number increases

the spreading and reduces the oscillation amplitude.

Clearly, the choice of the parameter values which govern the quality of the

numerical solution is the set of values which give the best resolution of the shock

jump with the least oscillations for a given Reynolds number. The choice of

Reynolds number is somewhat arbitrary. However, considerations of the desire to

resolve a wide range of scales of turbulence lead to a value which allows the shock

to be captured in as few points as possible commensurate with the minimization of

the oscillations. With these considerations, both second and fourth order

dissipation parameters were used for subsequent calculations, with Re = 10,000.
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GRID DEFINITION

The computational grid used in preliminary calculations was uniform in the

lateral directions (parallel to the shock wave) and exponentially stretched in the

streamwise direction downstream of the shock. While this grid configuration allowed

the efficient development of the computational techniques for producing a turbulent

flow and computing statistics, accuracy in calculating the turbulence required a

uniform grid since that would allow the minimum resolvable scales to be the same

over the entire computational space. A uniform grid was therefore used in all

subsequent calculations.

The computational space is shown in Figure 4. For most of the calculations,

the grid dimensions were 0.1 x 0.1 with each axis divided into 80 segments. Some

calculations were made with a 160x160 point grid to test the effect of the grid.

The x axis defines the flow direction, the y axis defines the lateral direction. The

flow enters the computational space from the left, at x = 0. The region where

turbulence is introduced is along the y axis in the center of the inflow boundary.

STATISTICAL ANALYSIS

Understanding a turbulent flow requires examination of several kinds of data.

Instantaneous as well as statistical information can provide useful insights.

Statistical quantities can include a wide variety of data, from simple averages of

quantities measured (or calculated) at a single point in space or time to correlations

of quantities measured at several points and combinations of space and time. In

this investigation, the statistical analysis of the flow dealt primarily with

instantaneous velocity, pressure and density distributions, and statistical averages of

velocity, pressure and density fluctuations, and products of fluctuations defined at a

point. Some two-point correlations in both time and space were also calculated.

Basic statistical quantities were calculated by averaging over a specified

ensemble of grid points and time steps. The main requirement of the statistical

analysis is that the quantities included in the ensemble be independent. The

turbulence under study was produced by an input distribution of quantities
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randomly distributed in time and along the y axis at the inflow boundary. The

solution generated by this inflow was assumed to be homogeneous with respect to

variations in the y direction within a range defined by the specified inflow. The

basic statistical ensemble at each x station was defined to consist of data at grid

points along lines parallel to the y axis for all time steps. In order to avoid edge

effects, of N grid points included in the inflow turbulence specification, N-4 points

were included in the statistical ensemble. Statistical quantities were defined by

1 L T
<f> - f f f(x,t)dxdt (1)

LT 0 0

or, for a finite numerical ensemble,

1 J-1 N
<f> = E E f. (2)

N(J-2) j=2 n=1

where f is a quantity of interest, i.e., u, v, p, p, uv, pu, pu, etc., J is the number

of y-axis points at which the turbulence is introduced at the inflow boundary, and

N is the number of time steps included in the ensemble. Values of all four basic

flow quantities, u, v, p, p were accumulated at 36 y values between y = 0.025 and

0.075 in order to maximize the amount of data.

REPRESENTATION OF TURBULENCE

Turbulence is defined as an irregular condition of flow in which the various

quantities show a random variation with time and space coordinates, so that

statistically distinct average values can be discerned (Ref. 2). Frequently "pseudo-

turbulence" is used, referring to a flow field with a regular pattern that shows a

distinct constant periodicity in time and space, but produces certain statistical

properties of a turbulent flow. In recent numerical simulation studies of turbulence,

a typical technique is to begin a time-dependent solution of the Navier-Stokes

-9-
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equations with a flow field with fluctuations of the velocities produced by various

kinds of "pseudo-random" number generators (Ref. 3). After some integration time,

it is found that the solution has evolved into a state that resembles an actual

turbulent flow.

In the present study, the realistic simulation of turbulence was of less

importance than the accuracy of the computational method and the definition of a

flow configuration that would allow shock/turbulence interaction effects to bc

discerned. In the first place, the preliminary flow configuration was two-

dimensional, thus precluding realistic simulation of a three-dimensional field of

turbulent fluctuations. Secondly, it was not desirable to devote effort to perfecting

the turbulence simulation until the fundamental value of the overall approach could

be demonstrated.

As a preliminary method of simulating a turbulent flow field, the two velocity

components, and the pressure and density were prescribed at each point of a range

of y values at the inflow boundary using a series of numbers produced by a

standard random number generator which produced pseudo-random values with a

Gaussian distribution between 0 and 1. These numbers were then modified to

produce some correlation between the values at successive time steps by the

expression

1

Sn = CS n-1 + (1 - C 2 ) 2 Rn (3)

where R n is the sequence of independent random numbers, Sn is the next value of

the correlated sequence, Sn.1 is the previous value, and C is the correlation

coefficient. In this work, the correlation coefficient was taken to be

C = 0.98 (4)

This value was somewhat arbitrarily chosen so that the autocorrelation of the Sn

sequence decreases to 0.5 in about 30 time steps. These quantities were then used

to define fluctuations of the flow field by the relations
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p p. (I + aS1  (5)

u = u (1 + bS2) (6)

V = u.cS3  (7)n

p = p. (1 + dS4 (8)

where the superscript on the random sequence identifies a different sequence for

each variable, each sequence independent from the others. It is recalled that these

expressions are applied as a function of time at each point in a range of y values

at the inflow boundary. Thus, while the time variation of the fluctuations at each

y location is not completely random because of the correlation coefficient, C, the y

variation is more random due to the relative independence of the terms of the R"

sequence. A simple three point smoothing was applied to the inflow conditions in

the y-direction to help eliminate numerical problems created by large changes

between the specified values of the flow variables at adjacent y locations in the

incoming flow.

RESULTS FOR NORMAL SHOCK/TURBULENCE INTERACTIONS

Calculations were performed for three cases. First, the solution for a uniform

steady flow with a shock wave was calculated. This provided the initial conditions

for the next case, a flow with turbulence specified as described previously using

random numbers in a finite region, forming a "jet" of turbulent flow in the center

of the uniform flow. The side boundary conditions for that flow were the

conditions at the final time step of the non-turbulent flow. Thus, the converged

steady flow solution provided both the initial conditions and the boundary

conditions for the subsequent turbulent solution. It also provides an estimate of the

error associated with the numerical procedure. The third case calculated was a flow

like the second case except that the flow was uniform everywhere initially, with

supersonic inflow as in both previous cases, but with no shock jump on the side

boundaries and with all independent variables, including the downstream pressure,

-11-



calculated by extrapolation at the downstream boundary. The second and third

cases thus provided a comparison between a turbulent flow in a supersonic strean

and a turbulent flow passing through a shock wave.

The calculated variables were normalized with respect to free stream quantities,

with the resulting steady state conditions at the inflow boundary as follows:

u00 1.15

v - 0.0

POO 1.0
POO = 1/7

for

7 1.4

The Mach number distribution for the steady solution has already been shown

in Figure 3d. The corresponding pressure distribution is shown in Figure 5.

Typical inflow perturbations are shown in Figure 6. In Figure 6a, the p and pu

fluctuations as a function of time at the centerpoint of the inflow boundary are

presented, while in Figure 6b the variation with y at a typical time step is shown.

An indication of the effect of viscosity on the turbulence is shown in Figure 7

where the y variation of p and pu at an x-station near the shock wave is seen to

be considerably smoother than at the inflow boundary. The primary features of the

previous plot are still discernible at this station, but the smaller features are

smoothed a great deal.

For the analysis of turbulence, the statistical averages of fluctuating quantities

are obtained by subtracting the mean values. For any collection of values of a

function, the mean value is defined by Equation (1) or Equation (2). By definition,

then, the average of the fluctuations about the mean value is zero. That is,

<f'> <f - <f>> = 0 (9)
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Thus, products of fluctuating quantities can be calculated as follows

<f'g'> = <(f - <f>) (g - <g>)> = <fg> - <f><g> (10)

In these definitions, it is important to note that the mean value defined by

Equation (2) depends upon the number of values used in the calculation. Also, the

presence of serial correlation, or dependence between successive terms of a random

sequence, can produce a bias in a finite sequence. Given a mean flow and random

fluctuations about the mean, it is possible to achieve an average value for the mean

flow-plus-fluctuations that equals the given mean flow within a finite uncertainty.

The uncertainty can be reduced to a small value, but can never be zero. In test

calculations with random numbers, it was concluded that at least 105 samples were

needed to achieve an acceptable level of uncertainty. For example, Figure 8 shows

the mean velocity fluctuation as given by Equation (2) with the individual values

given by the random function part of Equation (6). The mean is presented as a

function of the number of values in the ensemble for up to 105 points. The figure

shows that for ensembles containing less than 50,000 points, the mean value is

strongly dependent upon the size of the ensemble. For larger ensembles, the mean

value approaches zero, but still can fluctuate considerably. For the calculations

performed on the 80x80 grid in this work, values of the flow quantities were taken

from 36 y locations at each time step. To assure a reasonable accuracy in the

statistics, a total of 8000 time steps were calculated, making 288,000 values available

for analysis. Test calculations for 2000 and 4000 time steps produced results in

close agreement with the longer runs.

Some of the statistics of the calculated turbulence are shown in Figure 9-12.

In Figure 9, the turbulence intensities, i.e., the rms values of the fluctuations in the

u and v velocity components, are shown. The calculated distributions of the

quantities for the cases with and without a shock wave are superimposed.

Upstream of the shock, both solutions are identical, whereas downstream of the

shock, there are measurable differences. Both the streamwise (normal to the shock)

and the spanwise (parallel to the shock) turbulence intensity components appear to

be slightly increased upon passage through the shock. The large spike in the

intensities at the location of the shock is related to the shock capture region. In
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general, the shock region is a nonconservative region in which the numerical solution

is meaningless, and, accordingly, no special significance should be attached to the

shock capture region, but only to the beginning and end points of the region (Ref.

4). This suggests that the shock capture region in Figures 9-12 can be ignored for

the present analysis. The extent of the shock capture region is best determined by

examining the variation of the mean flow through the shock. The distribution of

the mean pressure, shown in Figure 13, indicates that the shock region consists of

seven grid points, ranging from x = 0.0275 to x = 0.0350. The turbulence

intensities shown in Figure 9 undergo large fluctuations in the shock region and do

not return to the shock-free variation after the shock. The increase in the

turbulence intensity downstream of the shock is considered to be due to the

interaction between the shock wave and the turbulence. Figure 10 shows that there

is also a density effect and a small effect on the pressure fluctuations, while Figure

11 indicates that the turbulence kinetic energy is increased by the shock wave and

Figure 12 shows an increase in the product <p'u'> from slightly negative ahead of

the shock wave to 0.0003 downstream of the shock, with a slightly smaller

magnitude effect on the product <p'u'>.

In view of the smallness of the numerical values of the changes in the density-

velocity products and the turbulence kinetic energy, a note about the accuracy of

the numerical calculations is in order. The algorithm used for the calculations is

formally of second order accuracy. This means that the solution error is of the

order of (Ax) 2 , or, for the grid used in the calculations shown in Figures 9-13, the

order of 10-6. Another way to assess the accuracy of the calculations is to examine

the solution for the case where no turbulence was present. In this example, the

exact solution is known and the effect can be easily estimated by comparison of the

computed and theoretical results. The variation of the numerical solution for the

pressure variation along the centerline of the computational region was shown in

Figure 5. The oscillations shown in that figure are due to the numerical scheme,

and are the response to the shock discontinuity. Another source of error of interest

in this analysis is the random error associated with the numerical calculations.

This error can be quantified by applying the statistical calculations tn +he steady

flow case. The error is indicated by the size of the "turbulent intensity" or rms

fluctuation of the solution about the mean. The results for the rms velocity

-14-



components and the rms pressure and density fluctuations are presented in Table I.

The results indicate that the maximum error outside the shock capture region is
-5

approximately 5x10 . Recall that the rms fluctuations as indicated in Figures 9
2

and 10 are of the order of 5x10 - , three orders of magnitude larger. The variation

of the mean velocities, density, pressure, and mass flux for the steady flow case is

listed in Table II, along with the theoretical values for a normal shock wave. The

maximum errors in the mean quantities occur ,-ear the shock due to the oscillations

of the numerical scheme.

Consider now the velocity and density product. If each quantity is taken to

be composed of an exact mean value, an error, and a turbulent fluctuation, that is

U = U + Ue + U' + ue' (12)

P=PO + P e + p 'I + Pel (12)

where ( )o the exact solution

( )e - the error

and

( )' = the turbulent fluctuations, then the mean values over the entire

ensemble of values calculated are

<u> = u + <Ue> (13)

and

<P> = P0 + <Pe> (14)

and

<pu> - <p><u> = <p'u'> + Error (15)

where

Error = (peu'> + <P'Ue> (16)
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The largest error in ue' is due to the oscillations from the shock capture.

These oscillations are spatial and are relative to the shock. If the shock does not

move, then there is no contribution to ue'. If the shock does move, then the

maximum error can be estimated by assuming the error, E, is proportional to the

magnitude of the oscillations, E,, and is given by

E = 2E 0-Xs/AX

where 6X, is the shock movement and AX is a grid cell; the wavelength of the

oscillation is 2AX. Taking the rms. value of 6X, as a guide, and noting that

13 6X 02
E 2(10 )(6X)rms 8(10 ) AX

it is found that

E ! io 4

or

Ue, L 10 - 4

Hence the overall error in <p'u'> is of the order of 1%.

Another perspective on the errors in the calculations is afforded by the

quantity <pu>. For an exact one-dimensional steady shock solution, this quantity

should be constant. The results in Table II for the case with no turbulence

indicate that the oscillations of the numerical solution can correspond to a jump in

<pu> of the order of *3.5 x 10-  depending on where the data are taken.

Comparing Figures 14 and 15 showing the correlation <pu> for the cases without

and with turbulence respectively, it appears that the error in that quantity is nearly

the same, independent of the presence of turbulence. The situation is clarified by

comparing Figure 14 with Figure 16 which shows the difference between the <pu>

distribution with turbulence and a shock (Fig. 15) and without a shock as in

Figure 17. The fact that the oscillations are of the same order as the observed

jump in the turbulent <p'u'> raises the question of whether the turbulence is

affected by the oscillations. Examining the solutions discussed previously with

reference to Figures 5 and 9-13, the oscillations present in the instantaneous

pressure distribution (Fig. 5) are much less obvious in the averaged turbulent flow
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(Fig. 13). Also, while still present, the numerical oscillations in <p'u'>

approaching the shock (Fig. 12) are much smaller in amplitude than the change in

<p'u'> across the shock, and the smoothness of <p'u'> indicates that it is not

affected significantly by the oscillatory numerical error seen in the <pu> and

<p><u> distributions (Figs. 15 and 18). Thus, it is concluded that the small

changes found in the turbulence/shock-wave interaction are due to flow interactions

and not to numerical error.

Further confirmation of this conclusion was obtained by calculating the flow on

a finer grid with 160 points on each axis. A calculation of 3300 time steps with

the turbulence defined at 81 points in the y direction provided the results shown in

Figures 19-22. The shock region as defined by the transition from upstream

conditions to downstream conditions and exemplified by the mean pressure

distribution in Figure 19 is slightly narrower than for the coarser grid. The shock

extends from x = 0.0275 to 0.03375, over 11 grid points. Quantitatively, the

solutions on the two grids cannot be directly compared, since the turbulence inflow

conditions were defined at each point of the inflow boundary in both cases and are

therefore different in the two cases. Also, the time step used for the fine grid

calculations was half that used for the coarser grid. Thus, the turbulence generated

on the fine grid was of a finer scale, both spatially and temporally than that on

the coarser grid. However, the solutions for both grids lead to the same conclusion,

that the turbulence is affected by the shock wave. The turbulence intensities shown

in Figure 20 are of the same order as those in Figure 9. The change in the v'

component downstream of the shock is nearly the same in both cases. The u'

component, on the other hand, appears to undergo slightly less change for the fine

grid. The density and pressure effects also are similar to those on the previous

grid. Comparing Figures 21 and 10, the pressure effect is nearly the same on both

grids, while the density effect is somewhat less on the fine grid. Turbulence kinetic

energy, Figure 22, is slightly decreased on the fine grid from that shown in Figure

11. However, the basic effect of an increase over the no-shock solution is present

in both solutions. Finally, the fine grid produces a jump in both the mean p'u'

correlation and the mean p'u' correlation that is smaller on the fine grid,

comparing Figure 23 with Figure 12.
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In considering the effects of the shock wave on turbulence which passes

through it, the shock wave is generally assumed to be stationary. The factors

which are expected to affect the turbulence are, then, the pressure jump, density

jump, and velocity jump across the shock. However, it is clear that, except at the

side boundaries where the shock location is fixed by the boundary conditions, the

shock must move since the shock speed is a function of the upstream flow

conditions. Since the conditions upstream of the shock are varying from time-step-to-

time-step and point-to-point, the shock speed must vary locally as this nonuniform

flow passes through. In addition to this fluctuation of the shock speed, the shape

of the shock must also undergo some variance in accordance with the spatial

nonuniformity of the flow field. This raises the question of whether the movement

and rippling of the shock should be accounted for when calculating the statistics for

the turbulence downstream of the shock wave.

Consider the equation for the conservation of mass in a compressible flow

Pt + (pu)x + (PV)y = 0 (17)

where the subscript notation is used to denote partial derivatives. At a normal
shock wave, because of the discontinuous flow conditions, the equation for the jump

in conditions at the shock becomes

[plft + [pulfx + [pvlfy = 0 (18)

where the square brackets represent the discontinuous changes in the quantities, and

the shock location is given by

f(x, y, t) = 0

For steady flow, this reduces to

[pu] = A (19)

where A is the error in the numerical solution. Dividing Equation (18) by fx and

recognizing that
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f -/f. = -us (20)

and,

fy/fx = -(dX./dy) (21)

the jump condition becomes

-[plus + [pul - [pv(dX,/dy)] = 0 (22)

Let

P = <P> + P'

U = <u> + u'

v = <v> + V1

M = dX./dy

where <> represents the mean value of each quantity, as previously defined. Then

Equation 22 becomes, after averaging over the entire solution

-[<pu , >] + [<p><u> + <p'u'>] - [<pvM>] = A (23)

In order to quantify the shock motion from the results of the numerical

calculations, the shock location was assumed to be the point where the local

pressure passed through 0.85 with positive gradient. This was a nominal value

determined by trial and error to locate a point which was consistently found in the

shock capture region.
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The change in the turbulence quantity <p'u'> across the shock is of the

same order as the change.s in the shock motion and shock ripple terms as shown in

Figures 24 and 25. Both of the shock terms undergo a strong perturbation at the

shock and then gradually decline as the correlation between the turbulence and the

shock motion decreases with increasing distance from the shock. The reason for the

apparent negative correlation between the shock ripple and the pv product

downstream of the shock is not understood at this time. In contrast to this

rapidly declining correlation, the <p'u'> correlation declines much more slowly after

the shock perturbation.

The magnitudes of the shock motion and shock ripple terms are found to be

as follows:

<us , 2 > 1/ 2  0.0556

<M'2> 1/ 2  = 0.0575

Both of these quantities are roughly twice the magnitude of the turbulence intensity

terms in the vicinity of the shock shown in Figure 9.

It is recalled that the shock capture region was considered to be a region

which could be ignored with respect to the numerical solution, taking only the

beginning and end points of the region as accurate. Confirmation of this

assessment is offered by Figure 26 wherein is shown the net mass flux as given by

<N> - <pus> + <pu> - <pvM> (24)

The beginning and end of the shock region are at approximately x = 0.0275 and

0.035 respectively, as discussed previously. The value of the balance is nearly the

same at the two points, even though the balance changes significantly between the

points. Thus, the mass balance after the shock is nearly the same as it was ahead
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of the shock. This is as it should be, allowing for some entrainment of fluid due

to the fact that the region for which the statistics are calculated is not bounded by

solid walls.

In the interest of turbulence modeling, the effects of the shock wave on the

turbulence kinetic energy is of great importance. The quantity presented in Figures

11 and 22 is the kinetic energy of the turbulence fluctuations,

<k> = (<pu'u'> + <pv'v'>)/2 (25)

This quantity contains the density and its fluctuations as well as the velocity

fluctuations of the turbulent flow. It is important to determine whether the

increase in this quantity downstream of the shock observed in Figures 11 and 22 is

due to factors in addition to the 25-percent increase in density across the shock

jump. For this purpose, it is more instructive to examine a quantity which

contains only turbulence quantities. For turbulence models, the quantity of most

interest in the present context would be

k* = (<u'u'> + <v'v'>)/2 (26)

*

The variation of <u'u> and <v'v'> and of k are shown in Figures 27 and

28, respectively. The <u'u'> and <v'v'> exhibit the same kind of behavior as

the <u'U'> 1 / 2 and <v'v'> 1/2 of Figure 9. Similarly, the k variation indicates an

increase over the no-shock case of approximately 30-percent. It is also observed in

Figures 9 and 27 and 11 and 28 that the decay rate of the various quantities is

changed significantly immediately downstream of the shock, increasing slightly for

<v'v'> and decreasing greatly for <u'u'>. This condition exists only for a short

distance downstream of the shock where the decay rate resumes a trend nearly

parallel to the no-shock case. Thus, the kinetic energy of the turbulence is

increased over the no-shock case through an increase in the intensity of the velocity

fluctuations through the shock, and then becomes further displaced from the no-

shock case through the apparent decrease in the dissipation and remains at a higher

level than for the no-shock case as the decay returns to the unshocked rate.
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If an analysis like that discussed previously with respect to the conservation of

mass is performed for the conservation of momentum and the equation for the

transport of turbulence kinetic energy, it is clear that terms containing the shock

motion and shock ripple will appear. It has been demonstrated that the shock

motion and ripple produce terms of the same order as the density-velocity

correlations and turbulence intensity of the flow field. While an exact cause-and-

effect relationship has not yet been established, it is strongly suggested by these

observations that the shock motion may be a significant factor in the production of

turbulence kinetic energy by the shock. An analysis relating the increase in

turbulence kinetic energy to the shock motion is presented in Appendix A.

Finally, the shock wave/turbulence interaction is observed to produce a net

increase in the streamwise mass flux within the channel defined by the turbulent

inflow. In Figure 17, the mass flux in that channel was shown for the case with

no shock wave. The mass flux increases slightly in the streamwise direction.

Recalling Figure 16, where the difference in the mass flux between the shocked and

non-shocked case is shown, the difference upstream of the shock is essentially zero,

except for the oscillations which increase as the shock is approached and then

decrease as the shock is passed. After the shock, as the oscillations diminish, the

difference shows an increasing trend.

The observations discussed herein lead to the conclusion that there is a

correlation between the fluctuating density in the vicinity of the shock and the

fluctuating local shock speed, and that the simple jump relation that exists for the

unperturbed mean flow, namely PllU = P2 u 2 does not carry over to the turbulent

flow. In fact, it is found that the correlation between p' and u, is of the same

order as for p' and u'. Furthermore, the magnitude of the rms fluctuation in u,

and in dX,/dy are both of the same order as the turbulence intensity components.

A similar analysis may be constructed for the momentum and energy equations.

This suggests that an important ingredient of a model of turbulence interacting with

a shock is the coupling between the shock motion and the density, energy, and

velocity fields.
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INDICIAL ANALYSIS

In unsteady transonic aerodynamics, it is observed that the shock motion is

nearly linearly dependent on the unsteady forcing function and, because of this

linearity, an "indicial" formulation of the shock motion as proposed by Nixon (Ref.

5) can be used. In such a formulation the shock location for any time-dependent

forcing function is related-to its "indicial response" to a step change in the forcing

function through a convolution integral. Thus, if 6Xs(t) is the shock location, then

+Xts(t) = 6X S(t)(O) of 6 T ) de(t-r) dr (27)6X s ~) =6Xs(t)€(0)( )dt

where 6X 3 E(t) is the transient response to a unit step change in some parameter e;

E(t) is an arbitrary schedule of the parameter e, and 6X5 (t) is then the shock

location due to this schedule. In view of the power of this theory in unsteady

transonic flow, it was decided to investigate its applicability to turbulence. That is,

the parameter e is taken to be the independent subset of the turbulence quantities

u', v, p', and p'; at this stage the correct subset has not been determined. The

validation of this indicial function idea is discussed in Appendix B.

In the indicial analysis for transonic flow it is frequently convenient to

represent the numerically generated indicial response function, 6XSC(t), by a simple

series, such as

(n)

0

(28)
N - b (n) xp(n(n) lt)]

1=1

where 6XE (n) is the indicial response due to a step change in the variable (n) of

((n)
coj' ), 6X8 (n)(o) is the value of 6X5 (t) as t~o and a~n  and b1

{" are constants

associated with the variable c
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Consider now the response of the shock wave to the nth turbulence quantity
f }(xj,t) where xj is the spatial vector and t is time. f(xj,t) may be expanded as a

Fourier series to give

f(n)(xi~t) = f fm(n)(x.)exp(iwmt) (29)
M=-00 j

where w is some fundamental frequency and Im ( is a function of x.

If fPn)(xj,t) is identified with e in Equation (27), and if the frequencies of

turbulence are high, then using the result obtained in Reference 5, it may be

shown that

(nn)® 5X(n) [ N  (n
s P (n) t)-1s- + _> bl 1 x

0E (n) w
. (30)

O fr(n)x exp(iwmt - ir/2)

or,

(n) ,( t)=-ia" s 1 + b (n) (n) r

s  j)(x ) = (n) ft+ b'n) (x1
f 0(31)

Differentiation with respect to time gives after some rearrangement

d6Xs (n) M M (n)(t) = s ()

dt " s (n) +

0

N o (32)

>1 fl n  fN) (x ,t) exp(-iw/2)
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and thus the shock speed becomes a linear combination of the turbulence variables

f(n)(xj,t). It can also be seen from Equation (30) that if the frequency, w, of the

turbulence tends to infinity, the shock location does not change but the shock speed

has a magnitude of the same order as the turbulence quantities.

It is of interest to consider the spatial derivative of 6x~n)(®). Differentiation

of Equation (31) with respect to xj gives

,(n)56X(n) ibX (n) (**)a (n)

a(5x (n) x [ 1 +

0 (33)

bln) f . dr exp(-iir/2)

If af~n/axj is the same order of magnitude as af(n)/Bt then the shock ripple,

M(n)(xj,t), has the same order of magnitude as the shock speed, us(n)(xj,t) and,

hence, also as the turbulence quantities.

In this analysis, the constants a (R), b( n) , and 6X(n)(n)/o n ) may be dependent

on the geometry of the problem, a result inferred from work in transonic

aerodynamics. Hence, the relation between the shock speed and ripple and the

turbulence quantities may not be universal.

The analysis in this section implies the following relations.

(a). The shock speed is the same order of magnitude as the turbulence

quantities and is a linear combination of them.

(b). The shock ripple may be of the same order of magnitude as the shock

speed.

(c). The shock motion is an order of magnitude smaller than the shock

speed.
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CONCLUSIONS AND RECOMMENDATIONS

The work reported herein represents the first step in a study of shock waves

interacting with turbulence. The overall goals of the study are to determine the

mutual effects of the interaction and to determine improvements for turbulence

models in the presence of shock waves. The ultimate goal is to extend this

knowledge to improving turbulence models in the presence of shock waves at

hypersonic speeds.

Two short term goals for the present study were to develop an accurate

numerical approach in two dimensions which would serve to illuminate the problems

that may be encountered in the long range study and to aid in determining

methods of analyzing the turbulence. These goals were accomplished by developing

a computer code employing MacCormack's explicit numerical method to solve the

Navier-Stokes equations for a normal shock wave encountering turbulence.

Another short term goal was to develop insight into shock/turbulence

interaction. This was accomplished by employing a low supersonic Mach number

which allowed the study to take place in an environment for which the basic

elements of the flow are well understood, and also to make use of certain

expedients available from transonic flow theory. The major insight that was

obtained from the work was that shock/turbulence interaction contains influences

from the shock motion that are quite unapparent from a Reynolds averaged point

of view. This conclusion must be examined further using three-dimensional

turbulence and higher Mach numbers. Also, the work must be extended to

encompass oblique shocks interacting with turbulence in a shear flow, since such are

the flows that will ultimately be of most interest.

Another short term goal of the work was to extend the numerical approach to

three dimensions. The effort to date has centered on developing the appropriate

analytical and computational tools for the analysis of turbulence/shock wave

interactions. The computer code used in these preliminary calculations has been

combined with another code employing the same algorithm already possessing the

required three-dimensional capability. The turbulence statistics, boundary condition
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treatment, and turbulence generation used in the two-dimensional code have thus

been extended to three dimensions. The code is now ready for a fully three-

dimensional treatment of the turbulence.

Examination of the solutions generated by the two-dimensional code indicated

that the numerical errors that are inherent in the explicit MacCormack algorithm

do not affect the turbulence calculations. Large oscillations are produced by

discontinuous changes in the mean flow quantities, but the perturbation quantities

undergo smaller changes and change more smoothly. Therefore, the pertubation

quantities exhibit only relatively small oscillations. Thus, the turbulence calculations

are believed to be accurate to within the truncation error for the numerical method.

Several observations were made which indicate the shock has a significant

effect on the turbulence. The shock produces a jump in the turbulence quantities,

with a long relaxation distance to return to unshocked values. The turbulence

kinetic energy is increased by 30 percent by the shock. The density-velocity

correlation, <p'u'>, becomes important during the shock jump and is greatly

increased over the case without a shock. On the other hand, the pressure-velocity

correlation, <p'u'>, is not quite so important.

Using the no-shock case as a guide, the rate of decay before and after the

shock indicates that the dissipation, e, changes only slightly compared to the kinetic

energy. Thus, if eddy viscosity is defined as Yt = k 2/E, the ratio of ut before and

after the shock is k1 
2 /k 2

2 - 2. This has implications regarding heat transfer

which can change dramatically because of changes in v t .

The results show that shock speed and ripple may be important factors in

determining the turbulence downstream of a shock wave. Shock speed and ripple

correlations are the same size as other important turbulence correlations, such as,

<p'u'>, <u'u'>, <pu'>, and k; shock ripple terms may be more important for

oblique shocks because of larger v component.

Transonic indicial theory applied to the shock/turbulence interaction leads to

several interesting observations. For example, while undergoing fluctuations in

velocity equal to the turbulent velocity fluctuations of the flow field, the shock
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location moves only slightly. Another observation is that shock speed correlations

are a linear combination of correlations of turbulent flow quantities. Jump

correlations for shock speed are about the same order of magnitude as the flow

correlation jumps.

In conclusion, this work has demonstrated that there are potentially very

important interactions between a shock wave and a turbulent flow field. The

approach taken, employing available numerical computational tools and an

approximate representation of turbulence, has provided useful insights for expanding

the research to encompass more realistic flow configurations and conditions. While

two-dimensional turbulence is not realistic, for the purposes outlined in this report

it contains the essential elements of a fluctuating flow field. It is strongly

recommended that future calculations be done in a three-dimensional turbulence

field. Also, a larger computational domain is needed to check the relaxation

distance of the shock effects on the turbulence and to isolate the computation from

boundary effects. A more accurate algorithm is needed in order to eliminate any

question of the effect of the numerical errors on the observed turbulence after the

shock. Finally, calculations should be done for an oblique shock in order to obtain

stronger v correlations.
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Table I.

List of rms values of u', v', p', and p' for steady shock case.

X u'rms v'rms p'rms p'rms

0.00000 7.12319E-06 1.44329E-06 7-39986E-06 7.03310E-06
0.00125 2.44887E-06 O.OOOOOE+O0 5.96046E-08 1.04606E-06
0.00250 7.20255E-06 1.44321E-06 7.37847E-06 7.02020E-06
0.00375 3.31865E-06 7.10731B-08 3.00102E-06 2.51402E-06
0.00500 8.46386E-06 2.27635E-06 8.73325E-06 8.37122E-06
0.00625 5.46286E-06 4.38622E-07 5.15468E-06 5.04989E-06
0.00750 1.04541E-05 3.45727E-06 1.0711.6E-05 1.03719E-05
0.00875 8.53908E-06 1.38007E-06 8.41271E-06 8.31928E-06
0.01000 1.31752E-05 5.23048E-06 1.34059E-05 1.31232E-05
0.01125 1.26839E-05 3.21078B-06 1.27408E-05 1.26148B-05
0.01250 1.75992E-05 7.98542E-06 1.79207E-05 1.75934E-05
0.01375 1.918105-05 6.38178E-06 1.95491E-05 1.93972E-05
0.01500 2.51577E-05 1.20906E-05 2.58342E-05 2.54843E-05
0.01625 2.88457E-05 1.10556E-05 2.97493B-05 2. 95925E-05
0.01750 3.50163E-05 1.69789B-05 3.62608B-05 3. 59802E-05
0.01875 3.80046E-05 1.54531E-05 3.945895-05 3.94713E-05
0.02000 4.06055E-05 1.92527E-05 4.20449E-05 4.20517E-05
0.02125 3.80670B-05 1.47329E-05 3.92283E-05 3.95789E-05
0.02250 3.49481E-05 1.472065-05 3.55554E-05 3.57724E-05
0.02375 2.90470E-05 7.81580E-06 2.92946B-05 2. 96241E-05
0.02500 3.08264E-05 8.706205-06 3.08959E-05 3.08293E-05
0.02625 2.90521E-05 4.04505E-06 2.96802E-05 2.95422E-05
0.02750 5.16982E-05 8.59280B-06 5.07960E-05 5.16102E-05
0.02875 7.75456E-06 1.03651B-06 1.24250E-05 9.88898E-06
0.03000 2.23273E-04 1.13871B-05 2.26297E-04 2.37557E-04
0.03125 1.61209E-04 4.52128E-05 1.95533E-04 2.04737E-04
0.03250 3.78583E-05 3.66188E-05 3.83401E-05 4.57391E-05
0.03375 1.80216E-05 3.88444E-05 1.92622E-05 2.06197E-05
0.03500 5.37351E-05 2.77664B-05 6.09432E-05 6.77737E-05
0.03625 2.63460E-05 2.20543E-05 2.66304E-05 2.92868E-05
0.03750 4.46592E-05 1.36363E-05 5.04349E-05 5.59164E-05
0.03875 2.65819E-05 7.22448E-06 2.80054E-05 3.07446E-05
0.04000 3.18990E-05 3.29671E-06 3.63368E-05 4.03315E-05
0.04125 2.05268E-05 6.16266E-06 2.25863E-05 2.47881E-05
0.04250 1.94939E-05 7.88442E-06 2.26921E-05 2.53252E-05
0.04375 1.57339E-05 1.13655E-05 1.90377B-05 2.09183E-05
0.04500 1.16217E-05 1.17925E-05 1.37166E-05 1.53833E-05
0.04625 1.52566E-05 1.35844E-05 1.98255E-05 2.18449E-05
0.04750 1.01664E-05 1.30935E-05 1.12954E-05 1.24460E-05
0.04875 1.47201E-05 1.37006E-05 1.95935E-05 2.16414E-05
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Table II.

List of <u>, <v>, <p>, <p>, and <pu> for steady shock case.

Theoretical Values at shock jump:

uI  = 1.15 U2 = 0.916305
P1 = 1.0 P2 = 1.25504
vI = 0.0 v2  = 0.0
P1 = 0.714286 P2 = 0.98286
<PU> 1 = 1.15 <Pu>2 = 1.15

x <u> <v> <p> <p> <Pu>

0.00000 1.150027 6.07867E-08 0.999971 0.714258 1.14999
0.00125 1.150000 O.OOOOOB+00 1.000000 0.714286 1.15000
0.00250 1.149972 -6.07837E-08 1.000029 0.714314 1.15001
0.00375 1.150010 1.02647E-11 0.999991 0.714276 1.15000
0.00500 1.149964 -9.57456E-08 1.000037 0.714322 1.15001
0.00625 1.150024 1.39344E-08 0.999977 0.714262 1.15000
0.00750 1.149947 -1.45508E-07 1.000054 0.714339 1.15001
0.00875 1.150047 5.19740E-08 0.999953 0.714238 1.14999
0.01000 1.149919 -2.23606E-07 1.000083 0.714367 1.15001
0.01125 1.150086 1.35955E-07 0.999913 0.714199 1.14999
0.01250 1.149871 -3.62275E-07 1.000132 0.714415 1.15002
0.01375 1.150150 3.14396E-07 0.999848 0.714134 1.14999
0.01500 1.149790 -6.27321E-07 1.000214 0.714497 1.15004
0.01625 1.150258 6.64969E-07 0.999738 0.714026 1.14996
0.01750 1.149652 -1.07788B-06 1.000355 0.714636 1.15006
0.01875 1.150439 1.16248E-06 0.999554 0.713844 1.14993
0.02000 1.149418 -1.51634E-06 1.000592 0.714871 1.15010
0.02125 1.150735 1.36886E-06 0.999252 0.713545 1.14987
0.02250 1.149020 -1.35362E-06 1.000995 0.715272 1.15016
0.02375 1.151165 8.29798E-07 0.998808 0.713109 1.14979
0.02500 1.148177 -6.89811E-07 1.001815 0.716110 1.15026
0.02625 1.151036 3.19065E-07 0.998812 0.713187 1.14967
0.02750 1.143497 -5.40899E-07 1.006029 0.720638 1.15039
0.02875 1.137744 1.03004E-07 1.010291 0.725830 1.14945
0.03000 1.084217 -7.05174E-07 1.061083 0.780058 1.15044
0.03125 0.961642 -2.69602E-06 1.195909 0.922350 1.15004
0.03250 0.924830 -2.22471E-06 1.243277 0.971103 1.14982
0.03375 0.918577 -2.15126E-06 1.251994 0.979883 1.15005
0.03500 0.916195 -1.53559E-06 1.255089 0.983130 1.14991
0.03625 0.916602 -9.97246E-07 1.254663 0.982625 1.15003
0.03750 0.915980 -5.79323E-07 1.255409 0.983443 1.14993
0.03875 0.916406 -5.55969E-08 1.254908 0.982887 1.15000
0.04000 0.916056 1.42036E-07 1.255322 0.983344 1.14995
0.04125 0.916332 4.97701E-07 1.254997 0.982985 1.14999
0.04250 0.916121 5.41513E-07 1.255247 0.983261 1.14996
0.04375 0.916295 7.36329E-07 1.255042 0.983035 1.14999
0.04500 0.916169 6.99422E-07 1.255191 0.983200 1.14997
0.04625 0.916278 7.83975B-07 1.255063 0.983058 1.14999
0.04750 0.916205 7.14981E-07 1.255150 0.983155 1.14998
0.04875 0.916273 7.35186E-07 1.255071 0.983067 1.14999
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APPENDIX A

ANALYSIS OF TURBULENT KINETIC ENERGY

Consider the conservation of mass through a normal shock wave, that is

P0 1U = P2 u2  (Al)

where p is the density and u is the velocity normal to the shock; the subscripts 1

and 2 denote values ahead of and behind the shock respectively.

The density can be written in the form

(7-)M. 2  2
p 0 {l + 2 (1 - 2)}7 exp(-s/R) (A2)

where a is the velocity normalized with respect to a reference velocity, u0, with an

associated Mach number, Mw; S is the entropy and R is the gas constant.

If the shock wave is weak, the entropy jump, AS, across the shock is given by

AS/R- 27 2 - 1)3 = A(MI2 - 1) 3  (A3)

3(7+1)

where M, is the Mach number ahead of the shock wave.

Now let a be represented by

u = 1 + u (A4)

Using Equations (A2), (A3), and (A4), Equation (1) can be expanded to second

order in u as

1 P22u x u2 ( + P2 u u2 - A(M12 1) 3  (A5)

where

Al -



P 2 -- 1 - M002

(A6)
= M. 2[3 + (7 -2)M. 2]

In this formulation M, is given by

M12 = M. 2 + u1  (A7)

The perturbation velocity can now be represented by

u = u + u' (AS)

where U- is a stationary value and u' is a fluctuating value.

Now let

U,=0 (Ag)

and a zeroth order perturbation analysis gives

2- ~-2 8 A6
P 2 2  u2  + Ap 0 (AIO)

while a first order analysis gives

2Ul (2 _6 2 (U

P 2 - Kul fu1 ' = (P 2 ' - xu 2 ' u2 ) {1 + [1 3P2(KU 2 +

(All)

3Pu4 Xu , + (ul') 3]}

If the shock is weak such that

p2 < < 1 (A12)

then a first approximation to Equation (All) is
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Now the above analysis assumes that the velocities are relative to the shock wave.

If the shock wave is moving at speed u' s and is at an inclination m, where

dx
S (A14)m-dy

then, in a fixed frame of reference

u (u' -u' - my - mv')/( + m1/2 (A15)

where u is the fluctuating velocity in the fixed frame of reference, V is the mean

value of v and v' is the fluctuating value of v. Using Equation (A15) in Equation

(A13) and taking averages

2 2[<UlU'> - <Us'Ul'>] + P <mv 1 '> = k[<u2 'u 2 '> - us'u 2 >] + P (my'> (A16)

where terms of order higher than the second have been neglected. Equation (A16)

can be rearranged to give

<UlUl> = <u2'u2'> + [<us'u 1 ,> - <us'u2'>] P /X [<m^l,> - (mY2m>] (A17)

If the shock is stationary, then Equation (A17) reduces to

<ul 'ul'> = <u 2 'u 2 ' > (A18)

For the tangential component of velocity the jump in v in shock fixed

coordinates, gives

v = v (A19)

and in space fixed coordinates

V + (u1 - S)m = V2 + (u 2 - us)m (A20)

Again splitting v into a stationary and non-stationary component gives

A3-



V11 + (u1 ' - us')m = V2' + (u2 ' - u,)m (A21)

squaring both sides, neglecting terms of order higher than the second and averaging

gives

<Vl 'vI'> = <v2
' v2 t> (A22)

Using Equation (A17) and (A22) it may be seen that the jump in turbulent kinetic

energy, defined by

k {<u'u'> + (v'v'>} (A23)

is given by

1 _ k2 = {[<usU> _ (u s Us,] _ us /X[<mvl> - Kmv2 >]} (A24)

and it may be noted that if the shock speed and ripple terms are neglected, then k

is continuous through a shock wave.

If the data from the simulations are used to evaluate the right hand side of

Equation (A24) then

k 1 - k2 = -2.31 x 10 - 4  (A25)

which is an increase of turbulent kinetic energy through the shock. In the

simulation, k, as defined in Equation (23), is 5.56 x 10- 4 and, hence, the shock

increases k by 41%.
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APPENDIX B

INDICIAL ANALYSIS

Since the flow conditions being used in these investigations are in the

transonic range, it was suggested that some insight for assessing the magnitude of

the effect of perturbations on the shock speed and the influence of the shock speed

on the turbulence might be possible from a linear theory such as the transonic

indicial theory developed by Nixon (Refs. B1 and B2).

The indicial method uses the principle of superposition to relate complex

motions to an indicial response by means of Duhamel's integral. The indicial

response is the time history of the motion in question in response to a step change

in some flow parameter.

The basic equation for shock movement is, from Reference B1

+ t J (d) (B1)6X (t) = t 6XW (0) 0 6X (T-) d t-r r(

where 6X, is the shock movement, and E(t) is a time-dependent parameter typifying

the unsteady motion. 6XsE(t) is the indicial response, defined as the response of the

shock location due to the instantaneous unit change in the parameter e(t). In

Reference B2, Nixon shows that for an input representing simple harmonic motion,

the shock motion is also harmonic, with a phase lag varying with the frequency of

the driving function. In particular, for very high frequencies, the shock motion goes

to zero as 1/k where k is the reduced frequency, wc/uo, where c is a reference

length and u, is the freestream velocity. However, while the magnitude of the

shock movement vanishes as frequency increases, the theory indicates that the

velocity of the motion remains oscillatory with a finite amplitude while the

amplitude of the acceleration of the shock motion approaches ® as the reduced

frequency.

The above discussion suggests that an important part of the turbulence in a

shock/turbulence interaction may be the motion of the shock itself, which is not

accounted for by the Reynolds averaging process which averages the fluctuating

Bi-



quantities over a long time and considers only fluctuations of the flow velocities and

other flow variables relative to a fixed coordinate system. In order to obtain an

estimate of the magnitude of the shock motion corresponding to the numerical

experiments discussed previously, a series of calculations were made for a case using

the indicial theory.

In the indicial test cases, the same type of flow configuration was used as for

the results shown in Figures 9-17. However, instead of imposing a random

variation of the flow variables in the center portion of the inflow boundary, two

cases were calculated. The first case was the indicial response case in which all

flow variables were held constant at their initial values on the inflow boundary

except for the streamwise velocity component, u, which was given a step

perturbation at time zero in the center portion of the boundary (40 grid points)

and held at the perturbed value for the entire calculation. In the second case, the

u-velocity component was calculated from the random function in time, the same

value being specified at all y locations on the inflow boundary for each time step.

In other words, the inflow was a two-dimensional pulse with random fluctuations.

Typical results from the indicial response calculation are shown in Figures B1-

B3. In Figure B1, contours of constant pressure are shown 1000 time steps after

\the initial step perturbation of the inflow velocity. In Figure B2, a composite plot

is shown of the pressure distributions along constant x lines near the centerline of

the flow. The initial pressure distribution of the unperturbed flow is shown for

comparison. Finally, in Figure B3, the indicial shock displacement from the initial

location is shown. There is a short delay from the start of the calculation,

corresponding to the propagation of the step pulse through the upstream flow, then

the shock begins to move in response to the new inflow. The waviness of the

shock motion is a numerical phenomenon related to the size of the computational

grid, the small number of grid points in the shock capture region, and the linear

interpolation of pressure which was used to locate the shock. For the calculations

shown here, the shock location was taken to be the point where the pressure was

equal to 0.85 and was rising with increasing x.
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The fluctuating inflow velocity is shown in Figure B4. This function was

imposed at the same 40 points in the center portion of the inflow boundary as was

the step pulse in the indicial calculation. Two typical pressure contour plots are

shown in Figure B5 for this case. The first, Figure B5a, shows the situation after

200 time steps, the second shows the situation after 1000 steps. Finally, the

distribution of pressure along x lines near the centerline for the perturbed flow is

shown in Figure B6a and b for the same two time steps as the previous figure.

The motion of the shock at the centerline was determined for the perturbed

flow in the same manner as for the indicial flow, and the location of the shock as

a function of time is shown in Figure B7. It is noted that the shock motion does

not oscillate about zero as a mean value. The reason for this is that the input

velocity perturbation (Fig. B4) does not oscillate about zero as a mean. While the

perturbation of the velocity should eventually have zero mean value, the nonzero

value apparent in Figure B5 is believed to be due to the small sample size. If the

calculation were to be extended to include 10000 time steps, the true statistical

mean should be apparent. The present analysis makes use of the small sample size

because the interest is in the transient phenomena, not in the asymptotic statistics.

The shock perturbation velocity calculated by differencing the X, data is

shown in Figure B8. It is noted that the magnitude of the shock velocity is of the

same order as that of the inflow velocity fluctuations. The shock motion appears

smoother than the inflow velocity, due to the damping effects of the viscosity, both

real and artificial, which reduces the higher frequency fluctuations in the calculated

flow field.

With the apparent conceptual agreement between the full Navier-Stokes

solution and the analytical indicial theory regarding the magnitude of the shock

velocity and its potential importance to the shock/turbulence interaction, an

examination was made of the ability of the indicial theory to predict the shock

motion. Recalling Equation (B1), an equation for the shock velocity can be

obtained by differentiation. Thus,
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+rt d (t-'h
u( de(0) + 5u N (0) + 6X s d 2 d7- (B2)

s ) = s dt s E€  0 f E dt 2

The indicial response was shown in Figure B3. The function €(t) was taken

to be the inflow perturbation velocity, u(t), shown in Figure B4. Calculation of the

integral in Equation (B2) by a simple trapezoidal rule and the derivative of the

indicial response by backward differences produced the distribution of the shock

velocity shown in Figure B9. Comparison of Figures B9 and B8 reveals that the

shock velocity predicted by the indicial formulation has generally the same frequency

and phase as that given by the Navier-Stokes solution, with large errors in the

amplitude of the velocity fluctuations; the reason for the errors is not clear at

present. The shock location determined by integration of Figure B9 compares fairly

well with the direct solution (Fig. B10).

From the surprisingly good agreement between the indicial theory and the

Navier-Stokes solution for the shock location, it can be tentatively concluded that

the assumption of a linear relationship between certain flow properties and small

perturbations of velocity, pressure, or density can be a useful tool for providing

some insight to even the complex interaction between a shock and a turbulent flow

field. For the present, the primary conclusion that can be drawn is that the shock

motion must be included in any analysis of turbulence models for flows with shocks.

REFERENCES

Bi. Nixon, D.: Notes on the Indicial Method, AIAA Journal, Vol. 16, No. 6,

June 1978, pp. 613-616.

B2. Nixon, D.: On Unsteady Transonic Shock Motions, AIAA Journal, Vol. 17,

No. 10, June 1979, pp. 1143-1145.

B4 -



070 0/0 C0

Fiire B . o t ur f o san res r fr in iil out.l



0; C 00 .3 00 0.05 0.06 0.0? G.CP C,-C

Figure B2. Pressilre distributioni near centerline for indicial solution.



2.5

0. 0

0.0 200.0 400.0 600.0 1000.0 1000.0nm

T' me Steps

Figure B3. Plot of (5X, fromn judicial solutioll.



01.

U. .21)

0.05-

11F 0.00-

-0.10-

-0.15-

-0.20-

-0.25 - T-----
0.0 20n.2 0 100.0 600.0 6> C u

T -me ' St-e pb

Figure B4. PlIot of il from random functionl.



C C

CD

CD

CD

LCD
CD

CD

0.00 O.W 0.02 0.03 0.01 0.05 ci IJ OJIr Cl tC.C 1- .

a. t-200.

Figure B5. Contours of constant pressure for pertulrbed solution.
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Figure B6. Pressure distribution near centerline for perturbed solution.
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Figure B7. Plot of X, from Navier-Stokes solution for perturbed case.
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Figure B8. Plot of U,, froin Navier-Stokes solution.
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Figure B9. Plot of U, from indicial integral.
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Figure BlO. Plot of X. integrated from U. from indicial integral.
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